講座題目:Tensor Products of Coherent Configurations
講座專(zhuān)家:陳剛(華中師范大學(xué)教授/博士生導(dǎo)師)
講座對(duì)象:學(xué)院教師、碩士生,、本科生
講座時(shí)間:2021年6月4日下午
講座地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院3401教室
內(nèi)容摘要:A Cartesian decomposition of an arbitrary coherent configuration $\cX$ is defined so that every tensor decomposition of $\cX$ comes from a certain Cartesian decomposition. It is proved that if $\cX$ is thick, then there is a unique maximal Cartesian decompostion of $\cX$, i.e. there is exactly one internal tensor decompostion of $\cX$ into indecomposable components. In particul-ar, this implies that an analog of the Krull-Schmidt theorem for the thick coherent configurations.A polynomial-time algorithm for finding the maximal Cartesian decompostion of a thick coherent configuration is constructed. This is joint work with Ilia Ponomarenko.
專(zhuān)家簡(jiǎn)介:陳剛,,華中師范大學(xué)教授,,博士生導(dǎo)師,。2005年畢業(yè)于武漢大學(xué)數(shù)學(xué)統(tǒng)計(jì)學(xué)院,,并取得理學(xué)博士學(xué)位。2017年晉升為華中師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院教授,。曾主持國(guó)家自然科學(xué)基金天元基金,,國(guó)家自然科學(xué)基金青年基金,國(guó)家自然科學(xué)基金面上項(xiàng)目2項(xiàng),國(guó)家自然科學(xué)基金國(guó)際合作交流(中俄)項(xiàng)目等,。研究方向?yàn)榇鷶?shù)學(xué),,特別是表代數(shù)和Schur環(huán)。近年來(lái)在國(guó)內(nèi)外數(shù)學(xué)期刊J. Algebra等發(fā)表論文20余篇,。