報告題目:Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate
報告人:楊瑜
報告時間:2022年6月24日18:30-21:30
騰訊會議ID:283-839-579
報告摘要:This paper is concerned with the dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. We first establish the wellposedness of this model. Then we clarify the relationship between the local basic reproduction numberand the basic reproduction number .
It could be seen that
plays an important role in determining the global dynamics of this model. In fact, we show that the disease-free equilibrium is globally asymptotically stable when
. If
, then the disease-free equilibrium is globally asymptotically stable under some assumptions. In addition, the phenomena of uniform persistence occurs when
. We also consider the local and global stability of endemic equilibrium when all the parameters of this model are constant. In the case
, we further establish the existence of traveling wave solutions of this model. Moreover, we provide an example and numerical simulations to support our theoretical results.
報告人簡介:楊瑜,,男,,上海交通大學(xué)理學(xué)博士,目前在上海立信會計金融學(xué)院工作,。主要研究方向是微分方程與動力系統(tǒng)及其在生物數(shù)學(xué)模型中的應(yīng)用,。2013-2014年在美國邁阿密大學(xué)數(shù)學(xué)系進(jìn)行學(xué)術(shù)訪問,。2017-2018年在上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院進(jìn)行學(xué)術(shù)訪問,。2017年入選浙江省中青年學(xué)科帶頭人。先后在國內(nèi)外權(quán)威刊物上發(fā)表學(xué)術(shù)論文40余篇,。已完成國家自然科學(xué)基金和浙江省自然科學(xué)基金項目共2項,。
邀請人:王連文
歡迎廣大師生積極參與!