報告題目:Multi-dimensional MHD Contact Discontinuities
報告人:王焰金
報告時間:2023年5月21日8:40-9:15
報告地點:數(shù)學與統(tǒng)計學院四樓會議室
報告摘要:Contact discontinuities of the ideal compressible magnetohydrodynamics (MHD) are most typical interfacial waves for astrophysical plasmas and prototypical fundamental waves for hyperbolic conservation laws. We prove the existence and uniqueness of MHD contact discontinuities in both 2D and 3D in Sobolev spaces without any additional conditions, which in particular gives a complete answer to the two open questions raised by Morando, Trakhinin and Trebeschi, and there is no loss of derivatives in our well-posedness theory. The solution is constructed as the inviscid limit of solutions to suitably-chosen nonlinear approximate problems for the two-phase compressible viscous non-resistive MHD. This is a joint work with Professor Zhouping Xin (CUHK).
報告人簡介:王焰金,,博士,,廈門大學數(shù)學科學學院教授,、博士生導師,。2005年本科和2011年博士畢業(yè)于廈門大學,,2009.9-2010.12美國布朗大學聯(lián)合培養(yǎng)博士,,2013.9-2014.9香港中文大學博士后,。主要從事流體力學方程的數(shù)學理論研究,,論文接受發(fā)表在CPAM,、CMP,、ARMA,、Adv. Math.、JMPA,、CPDE等,。曾獲2013年度全國優(yōu)秀博士學位論文獎和入選2018年度國家高層次青年人才。