報(bào)告題目:Zero-viscosity limit of the Navier-Stokes equations in thin domain
報(bào)告人:王超
報(bào)告時(shí)間:2023年5月21日9:15-9:50
報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院四樓會(huì)議室
報(bào)告摘要:In this talk, we talk about the hydrostatic approximation for the Navier-Stokes system in a thin domain. When the convex initial data with Gevrey regularity of optimal index 3/2 in x variable and Sobolev regularity in y variable, we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes/Prandtl or Euler system. Due to our method in the paper is independent of viscous coefficient, by the same argument, we also get the hydrostatic Navier-Stokes/Prandtl system is well-posedness in the optimal Gevrey space.
報(bào)告人簡(jiǎn)介:王超,,北京大學(xué)數(shù)學(xué)科學(xué)學(xué)院研究員,博士畢業(yè)于中科院數(shù)學(xué)院,,曾在巴黎第七大學(xué)從事博士后研究工作,。研究興趣為流體力學(xué)方程組,主要集中在水波方程,,可壓縮N-S方程等方向,,相關(guān)成果發(fā)表在Comm. Pure Appl. Math., Mem.Amer.Math.Soc., Arch.Ration.Mech.Anal.等國(guó)際著名數(shù)學(xué)期刊上。