報(bào)告題目:Bifurcation and parameter estimation for a model of bacterial-plasmid interaction with impulsive drug treatment
報(bào) 告 人:趙中
報(bào)告時(shí)間:2023年5月19日19:00-21:00
報(bào)告地點(diǎn):數(shù)學(xué)與統(tǒng)計(jì)學(xué)院3401教室
報(bào)告摘要:In this paper, a mathematical model of bacterial resistance caused by plasmids and mutations in the presence of discontinuous antibiotic inputs is developed. First, threshold conditions for bacterial-plasmid extinction and uniform persistence are obtained using the Floquet theory and the impulsive comparison theorem. Conditions for the existence of bifurcation of a nontrivial periodic solution of the system are obtained in terms of the theory of impulsive bifurcations. Furthermore, we apply our model to simulate four cases of bacterial culture medium data and obtain a good imitative effect. Next, global sensitivity analysis of the R0 is performed to obtain the parameters that have a large impact on the system. Finally, numerical simulations demonstrate the accuracy of the theory.
報(bào)告人簡介:趙中,,黃淮學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院院長,、博士,、教授,,2016年2月-2016年8月,受國家留學(xué)基金委資助赴加拿大約克大學(xué)訪學(xué)。先后被評為河南省特聘教授,、省級重點(diǎn)學(xué)科“應(yīng)用數(shù)學(xué)”學(xué)科帶頭人、河南省青年骨干教師,、河南省高??萍紕?chuàng)新人才、美國《數(shù)學(xué)評論》評論員,、中國生物數(shù)學(xué)學(xué)會(huì)理事,。主要從事生物數(shù)學(xué)、微分方程動(dòng)力系統(tǒng)的研究,,主持完成國家基金2項(xiàng),,在研國家基金面上項(xiàng)目1項(xiàng),。